Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How to Set Metrics for Product Launches

How we set product performance metrics at Amplitude, and why you should start doing it too.
Insights

Jan 9, 2018

10 min read

Paul Koullick

Paul Koullick

Former Sr. Product Manager, Amplitude

How to Set Metrics for Product Launches

One of my most favorite books related to product management is Lean Analytics. Most famously, it outlines the role of data in the build –> measure –> learn product development cycle, and what makes a good product metric.

A less well known concept discussed in Lean Analytics is a process in product development that they call ‘drawing a line in the sand’. The idea is simple: before you launch any new product or feature, set a measurable target that will determine whether or not the release was successful.

When I first read about all of this (I was graduating college at the time), it sounded simple enough. Yeah, sure – set a target, check if you hit it, makes sense. And yet, I’ve seen very few product teams actually do it. Empowered product teams might set quarterly business-wide OKRs and measure themselves against that, but I rarely see this practice applied down to the level of a feature release.

Don’t fall into the “Fun Fact” metrics trap

What happens instead is what I like to call Fun Facts. A Fun Fact is a contextless number generated after a release that makes people feel good at the cost of obfuscating actual success measurement. For example: “Over 4,000 people have used this feature already!” or “Awesome funnel conversion so far – 60%!”

These types of product analytics stats often get quoted in weekly standing product meetings, and everyone looks around and says “interesting!”. At best, Fun Facts are irrelevant. At worst, they spread as a meme within the company, get quoted by executives at company meetings and with external partners, and contribute to shaping misguided product strategy.

Why set metric targets for every product release

One of my favorite quotes in Horowitz’s Hard Thing about Hard Things is “All decisions were objective until the first line of code was written. After that, all decisions were emotional.”

It’s true – as soon as something moves from critiqueable design mocks to engineering requirements, it becomes a lot harder to admit failure. Nobody wants to tell the engineers and designers that nobody is using the thing they spent weeks working on. That’s exactly why, as a product manager, you should insist on setting your metrics, your key performance indicators (KPIs) before that first line of code is written.

At a high level, three things happen to a team that sets targets product metrics:

Setting product metrics builds team alignment

Making metrics a core part of the release process builds focus. It’s always easier to have a discussion about design, or development release timing decision, when everyone in the room agrees on why this thing is being released in the first place.

Agreeing on a target is an amazing way to resolve design disputes and keep moving forward. Disputes like this generally come from a misalignment on goals, so being specific and quantifying what success looks like gives folks the right context for making decisions about pet features or design minutia.

It builds autonomy

The practice of setting and communicating targets before a release builds trust and autonomy for your team. It’s the same idea as why you should set OKRs. It helps ensure that your team has the space to come up with the right solution to a problem, rather than the solution which most closely matches what executives think might solve the problem. It builds company-wide trust through accountability, and ensures that your team has space to breathe.

It introduces accountability

Setting metric targets introduces accountability into product development, reminding us all that we’re building for customers and that only the customer, not the designer, engineer, product manager, or executive, will determine whether it’s successful.

It also ensures that the product development team is thinking iteratively. Every time you commit to a metric, it should be an uncomfortable experience that makes you think: “Okay so what do we do if we don’t hit this?” This attitude empowers the designer to start thinking ahead to the V1.1 iteration, and for the engineer to build-in more code abstractions enabling the team to iterate faster.

An example of how we set product release targets at Amplitude

Last month, our team set out to add user profiles to Amplitude. The idea was to lay the foundation for building more social validation into the platform. We wanted to make building charts and dashboards in Amplitude feel more personally rewarding, and introduce additional search traversal routes for analysis consumers. The design kicked off with a product one-pager (similar to Intercom’s Intermissions), where we set a high level context, development scoping, and non-priorities. After a few rounds of iteration with the team, the designer came back with these mockups:


Mockup design of the Amplitude user profile.

mockups of amplitude user profile

Defining your product metrics

Defining good metrics is an art, but, logistically speaking, we created a simple spreadsheet with two sections. The first section is for primary metrics, which are designed to be overall success indicators. If we don’t hit these, we should go back to the drawing board with the release and re-examine our core product assumptions.


A sample of product metrics, broken down into primary and secondary metrics.

example of product performance metrics

Our primary metrics for the user portfolio feature release were:

  • Engagement (self) – % of DAU that visit their own profile page
  • Engagement (others) – % of DAU that visit someone else’s profile
  • Hover engagement – % of DAU that enable a profile hover state
  • Discovery – % of new enterprise users who visit another user’s profile in 1st session

A secondary metric is meant to validate smaller design decisions made. Missing a secondary metric means we should make adjustments to the design, but doesn’t indicate overall release success or failure.

Our secondary metrics for the user portfolio feature release were:

  • Photo engagement – % of profile hovers that have a photo
  • Description engagement – % of users who have added a photo within a week of viewing their own profile
  • Navigation to browse – % of users who click on dashboards/charts/likes links when visiting a profile page
  • Popular content engagement – % of users who click on the popular dashboards/charts table when visiting a profile page

How to set realistic product KPIs

Using the above spreadsheet, we sat down as a product development team (design, engineering, pm) and set the success metrics together. As we went down the list, we would discuss the closest proxy metric, decide on a target to commit to, and briefly mention what we’d need to do if the target wasn’t hit.

For example, we set a target of 10% for the percent of daily active users would visit their own profile page. We proxied this metric by looking at an existing analogous feature usage where you could use our search feature to find your previously created content. Given that the new profile page was designed to be more valuable and more discoverable, we decided to set this target somewhat aggressively – about 50% higher than the proxy. If we don’t hit that, the designer suggested that we might think about changing the link color to blue, making the hover state more engaging, or we might have to go back to the drawing board entirely.

Another target we set was that 20% of the time when a profile hover state was enabled, the profile should have a photo. The design had a prominent avatar photo placement on the hover state, and this was a topic of heated discussion during the design iteration process. Setting a target together with engineering and design built alignment and removed the politics from the decision. Now, we knew that we’d need to make an adjustment to the designs if we couldn’t get enough users to upload photos to justify the prominence of user photos product-wide.

What to do post-product release

Having set the targets up-front, it was very easy for me to prepare a reporting dashboard upon release. Folks felt ownership over the numbers, and it was exciting to see the numbers come in against our targets.

Rather than reporting_ Fun Facts,_ the team felt proud and empowered by the data. It also made product reviews extremely easy to prepare since I already had the metric targets, and could trivially provide an _is this good or bad _perspective. In short, setting metric targets before development front-loaded a lot of the analysis work we’d have to do anyway.

—-

We’re excited to start setting metric targets more consistently for every release at Amplitude. We think it’s the right kind of process – it builds accountability and drives business alignment on the product development team without enormous overhead. As always, we’ll keep adjusting as we learn.

If you’re a product manager, setting metric targets as part of your releases today, we’d love to learn from you!

If you enjoyed this post, feel free to share it with your network and to learn about other practices that we believe are key to winning in the product-led era, like low-friction user research after a release, and naming conventions for event logging.

Product Metrics CTA
About the author
Paul Koullick

Paul Koullick

Former Sr. Product Manager, Amplitude

More from Paul

Paul was formerly on the product team at Amplitude. Previously, product @StrideHealth, product analytics at @Square, and Harvard math & computer science. When not digging into retention curves, Paul likes to play chess and jog along the SF Embarcadero.

More from Paul
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Insights
The Product Benchmarks Every B2B Technology Company Should Know

Dec 11, 2025

5 min read

article card image
Read 
Company
How Amplitude Taught AI to Think Like an Analyst

Dec 11, 2025

8 min read

article card image
Read 
Product
Amplitude + OpenAI: Get New Insights in ChatGPT via MCP

Dec 10, 2025

3 min read

article card image
Read 
Product
Introducing the Next Frontier of Analytics: Automated Insights

Dec 10, 2025

5 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read