Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

The What, When, and Why of User Retention

In this post, we'll outline three levels of complexity that makes up a solid framework for acting on retention.
Insights

Jan 27, 2016

9 min read

Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

The What, When, and Why of User Retention

What percentage of users do you think come back to your app three days after downloading it? 90%? 60%? 40%?

Mobile intelligence company Quettra recently came up with a sobering statistic: The average Android app loses about 80% of its daily active users within the first three days, and about 90% by the first month. Think about it for a moment. 80% of the users who download your app are gone by the third day! It doesn’t even matter if you have thousands of people downloading your app. The harsh reality is, if they forget about it a couple days later, you’re deader than a Sean Bean character whose luck just ran out.

Fear not.

Instead of focusing on acquiring new users, you have to figure out how to hang on to the ones you have. You have to focus on user retention.

There are many ways to think about retention; what’s most lacking is a framework that lets you ask 1) what your retention is 2) where you have a problem and 3) how you can fix it. We like to call this the “3 levels of retention.” Each of these “levels” looks at user retention using a thicker lens and lets you ask a more complex question. Each question can be tackled by analytics tools of varying sophistication. In this post, we’ll start with the basic metric and then dive deeper until you’re able to ask key questions of your users’ behaviors; this will eventually allow you to develop better retention.

Level 1: What is my retention?

Say you’re a developer who’s thoroughly unsatisfied with all of the music streaming services on the market. You decide to create your own hipster music app called JukeBox. It’s been getting some traction, some users, but you know that if you want to get avoid a premature “Sean Bean”-type death, you need to know your retention.

The most superficial level of retention is simply getting at your numbers. There are different ways to calculate retention (which we’ll tackle in a later post), but for the sake of simplicity, let’s suppose you are looking at Day N retention. This is the most common type of retention to calculate. Day N retention reflects the percentage of users who come back and do any action in your app “N” days after they start using it.

If you don’t have analytics tools in place, you’ll have to calculate this metric by hand, manually leveraging software like Excel. This is a crude and inefficient way of doing things and can end up taking hours; most people can get a basic retention metrics from free analytics tools out there, but let’s treat this as as thought exercise.

Let’s say 12,481 users downloaded JukeBox on January 1, 2016 and you want to calculate the retention of this cohort, every single day, until Day 7. You need to track:

  1. New users acquired on Jan 1 (This is Day 0)
  2. Users from Jan 1 who were active on Day 1, Day 2, Day 3, … , Day 7

In this example, you start with 12,481 users on January 1. Let’s suppose you assign each user an ID in a spreadsheet and see that 3,506 of users who started on Jan 1 (i.e. D0) opened your app again on Jan 2 (i.e. D1). Your D1 retention rate for the Jan 1 cohort is: (3,506/12,481)*100 = 28.1%

If you repeat this process on Jan 3-7 (i.e. D2-D7), you may see something like this:

calculate-user-retention-1

But drawing conclusions on this data would be imprudent; you’re only looking at one specific acquisition cohort – users who were acquired on Jan 1. Most out-of-the-box analytics tools can calculate the Day N retention of different daily, weekly, or monthly cohorts, within a customizable range of dates. For example, if you wanted to look at the retention of daily cohorts acquired within January 1-9, you’d get a table that looks something like this:

calculate-user-retention-2

Great, so now you have a table full of numbers. If only you had some way of understanding what it all means! To get value out of your retention numbers, you have to go one level deeper.

Level 2: When are my users dropping off?

Retention curves are critical in pointing out when and where your app is having problems retaining users.

calculate-user-retention-3

Okay, so now you have a retention curve which is visualizing the average Day N retention of your January acquisition cohorts. You see how the trend is going and you’re not happy. You’ve lost 60% of your users by Day 1; by Day 7, you’ve only held on to 14% of your users.

This is a problem. To stay in business, JukeBox needs to make revenue. To make revenue, you need users. But it’s 6-7 times more expensive to acquire a new user than to retain the ones you have; if there was a way to improve your user retention, it would be a lot more profitable for your company.

To do that, you need to understand why your users are churning.

Level 3: Why are my users not being retained?

About 25 years ago, a study published in the Harvard Business Review showed that increasing customer retention rates by 5% increases profits by 25% to 95%. Imagine if just a small tweak to JukeBox’s onboarding experience led to higher retention and more revenue.

To gain real insight into what could improve your retention numbers, you need to ask a key question about your users’ behaviors: What actions are correlated with users being retained? What actions reduce user churn?

To answer these questions, you need to utilize analytics tools that will let you compare the retention of various behavioral cohorts – that is, groups of users who perform a certain action.

As soon as users download JukeBox, there are a number of actions they can take. They can join a community, find friends, create a playlist, play a song, etc… More and more apps these days are incorporating elements of a social media network within them, so you hypothesize that encouraging users to join a community during JukeBox’s onboarding will be correlated with them being retained.

To test this, you first have to see how well the cohort of users who join a community are retained.

calculate-user-retention-4

This retention graph shows that users who join at least one community are consistently retained better than the general pool of all users. Remember when we said the average app loses 80% of its users within the first three days? Well, only 28% of the users who joined communities churned out by Day 3. In fact, users in this cohort are consistently retained more than users who are not.

Okay, so what about the users who don’t join communities at all? If you plot the retention of users who do NOT join communities, you may get a curve like this:

calculate-user-retention-6

Retention is especially bad for this cohort; 87% of users churn by Day 3!

What does all of this mean? If you’re a dev at JukeBox, it’s worth your time to figure out a way to entice users to join a community.

With some baseline understanding of your users and perhaps use of predictive analytics features, you can craft even more sophisticated behavioral hypotheses. Suppose JukeBox goes goes global – do users from Belgium in their mid-20s who join communities retain just as well as their American counterparts? If not, what behaviors do users in that specific demographic exhibit?

Conclusion

Retention is the king that Boromir could never be.

In this post, we’ve outlined three levels of complexity that make believe makes up a solid framework for acting on retention. Level 1 is your most basic question – what are the numbers? Level 2 is finding your problem areas. Finally, Level 3 is goes into the behavioral layer of figuring out why users are churning and how you can get them to retain.

We’ll be talking more about retention in the coming weeks. To learn more, subscribe to our blog and tweet us!


Comments

Yassin Shaar: Great share. Looking forward to the next ones.

Johan Arve: Assuming the app was downloaded at 10 PM the second day will commence two hours later according to the first method and at 10 PM on the following day according to the second method as the second 24 hour period would start first then.

Alicia Shiu: We calculate daily retention based on 24 hour periods — so in your example, the second day would start at 10 PM on the following day. You can read more about how we compute retention here: https://amplitude.zendesk.com/hc/en-us/articles/230543327

About the author
Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

More from Archana

Archana is a Senior Learning Experience Designer on the Customer Education team at Amplitude. She develops educational content and courses to help Amplitude users better analyze their customer data to build better products.

More from Archana
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

article card image
Read 
Insights
Marketing Analytics in 2026: Predictions from the People Who Measure Everything

Nov 25, 2025

9 min read

article card image
Read 
Customers
Amplitude Pathfinder: How Dan Grainger Bet on Amplitude & Won

Nov 25, 2025

16 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude