Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

How to Find Value in a Failed A/B Test

Running an A/B test is easy, but making the most of your results is a learned skill.
Insights

Nov 17, 2016

7 min read

Stefan Bhagwandin

Stefan Bhagwandin

Writer, Leanplum

How to Find Value in a Failed A/B Test

For a new marketer reading about mobile A/B testing, the possibilities can feel limitless and bright. Statistically significant changes abound, and tweaking the color of a CTA is enough to earn a 10 percent lift in conversions.

In reality, A/B testing is not this pretty. Many A/B tests return results that are negative or — sometimes even worse — flat. Furthermore, testing too many variables at once could return seemingly contradictory results, where it’s difficult to correlate a specific change with a specific outcome.

But there’s still value in these “failed” A/B tests. It all depends on how you interpret the results. Let’s go over a few ways in which you can learn something new from an otherwise inconclusive test.

(Source: Unsplash)

1-leanplum

Dig Deep to Find Hidden Winners

Below, we see the results of an A/B test that compared the effects of a discount on total purchase value per DAU.

2-leanplum

On the left, we see the total purchase value per user in dollars. In this example, the discount variant slightly edged out the control with an average purchase value of $0.16.

You can tell at a glance that the results of this test aren’t very useful. Indeed, the current results report only an estimated four percent difference — well within the margin of error, which is represented by the shaded area around each line. Since the shaded areas are touching throughout the span of the test, we cannot be certain that the discount truly represents a four percent increase.

This test was never able to reach statistical significance, suggesting that there’s no meaningful difference between the control and the variant.

Or is there? Before jumping to that conclusion, consider diving into the data to discover hidden winners.

Try filtering your results by various categories. You can look at:

  • Device OS
  • Location
  • App-specific events
  • User attributes
  • User acquisition source

Even if the aggregate results for this metric are flat, there’s a chance that there’s a significant difference within a specific segment of your users.

Of course “significant” could mean positive or negative. With A/B testing, the goal is to learn — don’t worry if your flat result turns out to be negative. Take note of it for next time.

Track the Right Metrics

What you track is as important as who you test it on. Optimizing a single metric — especially if it’s the wrong one — gives you a skewed picture of how users respond to your changes.

Here’s an example. Let’s say you make a change to your retail app that’s supposed to increase a micro-conversion, such as completions of the Add to Cart event. It’s important that users complete this event (otherwise they can’t complete a purchase!), but it’s not the end-all be-all of shopping. The macro-conversion that really matters is purchases — how many of these users went on to complete the transaction and generate revenue?

If you tweak your app UI with the sole goal of boosting instances of Add to Cart, you run the risk of optimizing for the wrong metric.

What would happen if you implemented a UI with small buttons that are too close together? Users might accidentally press the “add to cart” button when they intended to click the “reviews” button, for example. The Add to Cart event metric would soar, but conversions would remain unaffected.

The easy solution to this problem is to brute force it by testing everything. This isn’t as crude as it sounds — dedicated mobile marketing solutions like Leanplum are configured to track every major metric by default. Leanplum goes a step further by automatically surfacing statistically significant changes, so tracking everything doesn’t mean sifting through 10x the amount of data. The analytics dashboard highlights what you need to know.

3-leanplum

If you’d prefer to run a minimalistic setup and only track what you need, it’s worth adding important macro-conversions to every A/B test. That’s the only way to be sure that your optimizations aren’t hurting your top line.

Double-Check Your Hypothesis

There’s no sugarcoating the fact that A/B tests don’t always work out. Try as you might, there may not be any actionable insights lurking in your data. But there’s no shame in going back to the drawing board.

When creating an A/B test, it’s recommended that you start with a hypothesis. This educated guess, qualitative though it may be, is the guiding force behind your experiment. You could argue that the purpose of an A/B test is to find quantitative evidence that backs a qualitative opinion about the app. Therefore, if an experiment fails altogether, it’s time to change the hypothesis.

Let’s pick a simple example: you’re trying to optimize your user onboarding flow, and you’re wondering what color the “register” button should be. In your A/B test, you compare bright red to solid black, with the hypothesis that the red CTA will attract more attention.

However, plenty of factors affect your event completion rate besides the button’s color. Maybe your onboarding flow is already doing its job and people are signing up regardless. Or maybe white text on a black button contrasts as much as white text on a red button, so the change doesn’t attract more clicks.

If you’ve A/B tested both options thoroughly and came up with nothing, it’s safe to assume that both button colors are equally effective. Instead of making further tweaks to this experiment in an attempt to find the optimal color, it may be more efficient to revise your hypothesis and find another method to increase sign-ups.

4-leanplum

Running an A/B test is easy, but making the most of your results is a learned skill. It takes a certain amount of diligence to pore over your results and identify where and how your changes made an impact. Software simplifies the process, but the user must know what to look for.

With these tips in mind, you’re ready to take on your next unsuccessful A/B test with confidence. Turning experimental failure into actionable data will take you a long way on your path to mobile app optimization.

About the author
Stefan Bhagwandin

Stefan Bhagwandin

Writer, Leanplum

More from Stefan

Stefan Bhagwandin is a social media and content intern at Leanplum. Leanplum is an all-in-one mobile marketing platform for driving engagement and ROI.

More from Stefan
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.
Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude

Recommended Reading

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

article card image
Read 
Insights
Marketing Analytics in 2026: Predictions from the People Who Measure Everything

Nov 25, 2025

9 min read

article card image
Read 
Customers
Amplitude Pathfinder: How Dan Grainger Bet on Amplitude & Won

Nov 25, 2025

16 min read

article card image
Read 
Product
Getting Started: Driving Product Engagement by Obsessing Over Activation

Nov 24, 2025

4 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read