Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

You’re Measuring Daily Active Users Wrong

If you haven’t stopped caring about vanity metrics — unique views, app downloads, registrations, etc. — you should.
Insights

Apr 3, 2025

17 min read

Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

You're Measuring Daily Active Users Wrong Large

Originally published on January 14, 2016

Browse by category

  • What Is Daily Active Users?
  • Why It’s Dangerous To Rely On Your DAU
  • How To Identify Real Usage In Your App
  • Find Out Where Most Usage Happens
  • Identify Features That Lead To Retention
  • Take The Vanity Out Of Activity

If you haven’t stopped caring about vanity metrics—unique views, app downloads, registrations, etc.—you should.

A lot of entrepreneurs have; they’ve read The Lean Startup or heard about Facebook’s “7 friends in 10 days” growth hack and they’ve started to focus on metrics like daily active users (DAU).

There are two problems with DAU:

  • It’s not actionable. You can’t do anything with a falling DAU except wonder what’s going wrong, and vice versa.
  • It can be easily manipulated. Every company that releases its DAU numbers calculates them in a different way, making them effectively useless even for comparisons between apps.

When Facebook hit a billion active users in a day, every blog covering tech rushed to write about it. But according to Facebook’s stock prospectus, you don’t even need to be anywhere near Facebook to be counted as a “user.” All you have to do is interact with their third-party integrations, and that could mean anything from clicking a tiny blue thumbs up on an ESPN article or sharing a song on Spotify.

And this points to the real problem with measuring “active users.” Active is a functionally meaningless word. It is whatever you want it to be.

To actually improve your product and make it supremely sticky, you need to connect your definition of “active” to your growth goals: figure out what kinds of activities and characteristics lead to retention and then build your idea of an active user around those. Otherwise, you might have a serious problem on your hands.

You need to connect your definition of “active” to your growth goals.

Before we really get into it, let’s get on the same page with the definition of daily active users.

What Is Daily Active Users?

Daily active users (DAU) is the total number of users that engage in some way with a web or mobile product on a given day. In most cases, to be considered “active,” users simply have to view or open the product. Web and mobile app businesses typically consider DAU as their primary measure of growth or engagement.

Monthly active users (MAU) is the aggregate sum of daily active users over a period of one month. In most cases, to be considered a “monthly active user,” a person has to open or view an app at least once in the period of one month. The ratio of DAU/MAU is typically a measure of ‘stickiness’ for internet products.

Why It’s Dangerous To Rely On Your DAU

Let’s say you put your social music playing app in the App Store a couple days ago. Growth is slow and steady until a couple tech blogs find your app and start talking up how great it is—suddenly you’re getting thousands of downloads every hour.

Then you wake up one morning to an email from Apple: they’re going to feature you in the App Store! Things couldn’t be better.

To understand how fast your app is growing, you decide to measure your number of daily active users. Your definition of “active” is your measurement of user activity of anyone who has logged in on a given day. The resulting graph might look something like this:

graph of daily active users who have logged in

Time to break out the bubbly, right?

Well, not necessarily. You just launched, got a press bump, and got featured. If all a user has to do is download your app and open it once, then your “active users” are bound to go up as registrations increase—people are curious and downloading an app is a low-friction transaction with zero commitment.

The danger of defining your “active user” by a minimal metric like logins is that you’re just seeing a reflection of press and hype. It doesn’t measure real usage of your app.

Downloading an app is a low-friction transaction with zero commitment.

graph of active users playing songs

While your DAU is skyrocketing, the number of people playing songs is not. People are downloading your app and logging in, but most of them aren’t really using it the way it’s meant to be used. If you’re only paying attention to your DAU, you’ll miss the fact that real usage is dropping off—you won’t hear the canary in the coal mine of your app.

In the short term, this looks fine—new user registration is masking lost users from lack of engagement. But churning through users isn’t a long term sustainable strategy, and over time, you’ll face a harsh correction.

graph of users dropping off

While your DAU might grow very quickly early on thanks to external factors, at some point your app’s growth is going to become dependent on its real usage. Media attention doesn’t create retention: you need stickiness to do that.

Stickiness is the stuff of Candy Crush, Instagram and WhatsApp. You know your app is really sticky when it becomes a part of your users’ lives, when it is opened not just once in a day but several times. That’s not a result you achieve just with good marketing: you get there when you build features that your users just can’t resist.

If you don’t have that real usage, your DAU is going to plummet as the novelty wears off—and your app will be sunk. Fortunately, there’s a simple solution: don’t let things get that far. Look at your real usage metrics and identify the features that get people coming back over and over again.

How To Identify Real Usage In Your App

The premise of DAU is basically solid—you measure the amount of activity in your app. Everyone wants to build an app that people are going back to every day. The problem is finding the right way to measure that activity so that you know how you’re actually doing, not how well the press is portraying you.

In other words, you want to figure out how often users are getting to the core value of your app. That’s the only thing that matters. Not download counts, not logins. To get there, you need to change the way you think about measuring activity.

It’s not about looking at a single kind of action over a period of time. It’s about looking at multiple actions and the people that perform them multiple times over a period of time. It’s about going through your app feature by feature and seeing how often people come back to use them.

How you interpret this data will depend on the type of app you have and how much activity you expect on the part of your users. If you’re Facebook, you expect users to be checking their Newsfeed, chatting and posting every day. If you’re an expensive, upmarket lunch delivery service, you might want to see people ordering at least once a week.

You want to figure out how often users are getting to the core value of your app.

First, you want a graph that lets you see what percentage of your overall users returned to your app day-by-day in the last week. Unlike your DAU graph, this graph doesn’t care about the total number of users you have, just the percentage that came back:

stickiness of users who returned to an app

72% of users returned two days or more out of the week, 58% returned three days or more, and 33% returned five to seven days a week. Only 8% of users came back every day.

These kinds of numbers aren’t out of the ordinary. Even for apps without hockey stick-like DAU graphs, real usage is often just a fraction of DAU. And you’re just measuring how often people opened the app. Now you need to start investigating what features are driving the usage you do have.

Deliver on your core value

Analyzing your app’s usage often means confronting somewhat grim realities, especially if you’re used to measuring a loose metric like active users. But like a bitter medicine, looking at real usage is the only way that you’re going to figure out whether or not you’re delivering the core value of your app to your users or whether your popularity is just a flash in the pan.

What you want to do now is start focusing on real usage and forget about DAU. You want to see people engaging with your app and coming back every day. To make that happen, you need to look at your app feature-by-feature and identify how well it’s hooking your users. First, check out the percentage of users that came back to play songs:

stickiness of active users who came back and played a song

72% of users returned two days or more a week. 54% returned three days or more out of the week, 21% returned five days or more, and 2% came back every day.

Interestingly, the percentages of users who returned two or three days a week to play songs are about identical with the percentages of overall users who returned at all. From this, you can surmise that playing songs is the primary action that your most casual users perform.

Towards the power user end of the spectrum, though, you start to see drift between the two graphs. 8% of your users returned to your app every day, but only 2% returned to play songs everyday. Perhaps as your usage increases, other features take occasional precedence over playing songs.

This is the reason you don’t just check out one feature. If you want to really understand what’s going on, you’ll do a full-scale stickiness audit and check out every feature in your app. You might be surprised: sometimes the real core value of your app just isn’t what you designed it to be.

If you want to understand what’s going on in your app, you’ll do a full-scale stickiness audit.

Find Out Where Most Usage Happens

You probably have a pretty comprehensive plan for how your app is going to be used. Your users, however, don’t care. To quote Mike Tyson, “Everyone has a plan until they get punched in the face.”

The first time your users download and start using your app will be a kind of punch in the face. The features you thought would be popular won’t be; the features you thought were ancillary will be the core experience for some of your users.

To really understand what’s going on with your app, you need to see what features are vastly outperforming others. No matter what you thought the core value of your app would be or what an active user would look like, the only way to truly define those terms is to see what features are keeping people coming back the most.

Because your app is based around both song playing and being social, you could look at the rates at which users return to add songs to playlists:

stickiness of active users who added a song to a list

Not amazing—66% did it twice a week, 5% five days a week, and only .11% seven days a week. Of course, you probably wouldn’t see any music apps with metrics indicating that many users are adding songs to playlists every day. Most people make playlists so they won’t have to manage their music later.

But you can set that aside because you’re just looking for a good definition of active user, and that means finding features that people come back often for.

Try looking at who’s coming back to post community comments:

stickiness of active users who posted a comment to a community

63% came back twice a week, 3% five days a week, and .04% seven days a week. These aren’t numbers that suggest posting comments is part of your app’s core value, but they’re not necessarily bad either; a sizable portion of your user base is posting a couple times a week, and music apps aren’t usually the most talkative.

Go through your app like this, feature by feature, and you will eventually be left with one that performs better than the rest. Once you find it, pin that feature to your definition of active user—next, you want to see how well that feature predicts retention over time.

Identify Features That Lead To Retention

When you define “active user” in terms of the feature in your app that keeps users coming back the most, you solve the central problem with DAU: measuring hype and popularity rather than real usage. What you can start to measure instead is how many users are actually getting to the core value of your app. You can use those measurements to plan for the future. And when it comes to the future of your app, nothing matters more than retention.

When you identify the feature that brings users back the most frequently to your app and best predicts long-term retention, then you have a feature around which to rally your entire team. This is the beauty of it: simply by re-defining your idea of “active user” with real usage metrics, you build a structure that incentivizes you to build your app in the right direction.

Here’s what an overall retention graph of your social music app looks like: for all users who signed up a month ago, it charts what percentage of them came back day-by-day.

retention graph of users who came back and did any action

Only 46% of users came back after a day, 20% after four days in, and about 4% after a month. Totally average for a mobile app, actually. But you don’t want average. Perhaps experiment with song-playing as a factor in retention. To do that, you just change your start action to Play Song. This way, the data collection begins:

  • On a particular day (Day 0)
  • For all customers who played songs on that day

The resulting graph will show how many of that cohort came back day-to-day for the next month.

retention graph of users who played a song

Users who play songs are retained to a much higher degree than your average user: 63% of users came back after a day, 45% after four days in, and about 50% came back on Day 30.

This is not just an improvement over the generic retention graph: these results indicate the beginnings of sustainable growth. Users who play songs are having your app’s core value delivered to them early, and they’re subsequently coming back quite often. Towards the end of the month, you even begin to see re-engagement from some users who’ve dropped off.

When you first check out your usage metrics, it’s not usually cause for celebration. But then these aren’t vanity metrics. Celebration’s not the point. The point is that even within a generally negative trend line you can still find out what features are performing well and what direction your app needs to go. It’s not a silver bullet, but it is a silver lining.

Take The Vanity Out Of Activity

The biggest problem with startups today, Chamath Palihapitiya says, is that ego gets in the way of delivering core value. Vanity metrics, flashy valuations and shimmering offices take precedence over product and business sense. K-factors, download counts and DAUs trounce experimentation, iteration and repetition.

At Facebook, Chamath ran the Growth team like a laboratory, constantly experimenting and trying new things to see what worked. What all their testing, experimenting and analyzing taught them, in the end, was one simple fact: that if users added 7 friends in 10 days they were retained with Facebook.

From then on, the entire company was united around a single goal: 7 friends in 10 days. That was the sweet spot for the delivery of Facebook’s core value.

It may also be true that Facebook could have achieved similar results going after something like “6 friends in 9 days” or “11 friends in 2 weeks.” But that’s not the point. The reason you delve into your data and come up with a metric like that, a kind of threshold point for long-term retention, is not to paint a scientifically precise picture of your app’s stickiness. It is to give your team something concrete to work towards, something that will be a goal for some time to come yet has also been proven to predict success.

It’s certainly a lot more achievable than “let’s get to a billion users!” That’s a huge number, and no one can conceptualize how to get there. But getting more users to friend 7 people within 10 days? That seems hyper-achievable. It’s the ultimate carrot, just dangling in front of your face.

Your app’s core value won’t be expressed in exactly the same way. You’ll have to find your own direction, and you won’t find it without extensive analysis of your features, usage and retention numbers. When you do, you won’t have a silver bullet.

You’ll have something better—a framework that drives you and your entire team to build out your app in the right direction, in the direction that leads to beloved products and long-term retention.

App vs. website report ad
About the author
Archana Madhavan

Archana Madhavan

Senior Learning Experience Designer, Amplitude

More from Archana

Archana is a Senior Learning Experience Designer on the Customer Education team at Amplitude. She develops educational content and courses to help Amplitude users better analyze their customer data to build better products.

More from Archana
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

article card image
Read 
Insights
Marketing Analytics in 2026: Predictions from the People Who Measure Everything

Nov 25, 2025

9 min read

article card image
Read 
Customers
Amplitude Pathfinder: How Dan Grainger Bet on Amplitude & Won

Nov 25, 2025

16 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude