Platform

AI

AI Agents
Sense, decide, and act faster than ever before
AI Visibility
See how your brand shows up in AI search
AI Feedback
Distill what your customers say they want
Amplitude MCP
Insights from the comfort of your favorite AI tool

Insights

Product Analytics
Understand the full user journey
Marketing Analytics
Get the metrics you need with one line of code
Session Replay
Visualize sessions based on events in your product
Heatmaps
Visualize clicks, scrolls, and engagement

Action

Guides and Surveys
Guide your users and collect feedback
Feature Experimentation
Innovate with personalized product experiences
Web Experimentation
Drive conversion with A/B testing powered by data
Feature Management
Build fast, target easily, and learn as you ship
Activation
Unite data across teams

Data

Warehouse-native Amplitude
Unlock insights from your data warehouse
Data Governance
Complete data you can trust
Security & Privacy
Keep your data secure and compliant
Integrations
Connect Amplitude to hundreds of partners
Solutions
Solutions that drive business results
Deliver customer value and drive business outcomes
Amplitude Solutions →

Industry

Financial Services
Personalize the banking experience
B2B
Maximize product adoption
Media
Identify impactful content
Healthcare
Simplify the digital healthcare experience
Ecommerce
Optimize for transactions

Use Case

Acquisition
Get users hooked from day one
Retention
Understand your customers like no one else
Monetization
Turn behavior into business

Team

Product
Fuel faster growth
Data
Make trusted data accessible
Engineering
Ship faster, learn more
Marketing
Build customers for life
Executive
Power decisions, shape the future

Size

Startups
Free analytics tools for startups
Enterprise
Advanced analytics for scaling businesses
Resources

Learn

Blog
Thought leadership from industry experts
Resource Library
Expertise to guide your growth
Compare
See how we stack up against the competition
Glossary
Learn about analytics, product, and technical terms
Explore Hub
Detailed guides on product and web analytics

Connect

Community
Connect with peers in product analytics
Events
Register for live or virtual events
Customers
Discover why customers love Amplitude
Partners
Accelerate business value through our ecosystem

Support & Services

Customer Help Center
All support resources in one place: policies, customer portal, and request forms
Developer Hub
Integrate and instrument Amplitude
Academy & Training
Become an Amplitude pro
Professional Services
Drive business success with expert guidance and support
Product Updates
See what's new from Amplitude

Tools

Benchmarks
Understand how your product compares
Templates
Kickstart your analysis with custom dashboard templates
Tracking Guides
Learn how to track events and metrics with Amplitude
Maturity Model
Learn more about our digital experience maturity model
Pricing
LoginContact salesGet started

AI

AI AgentsAI VisibilityAI FeedbackAmplitude MCP

Insights

Product AnalyticsMarketing AnalyticsSession ReplayHeatmaps

Action

Guides and SurveysFeature ExperimentationWeb ExperimentationFeature ManagementActivation

Data

Warehouse-native AmplitudeData GovernanceSecurity & PrivacyIntegrations
Amplitude Solutions →

Industry

Financial ServicesB2BMediaHealthcareEcommerce

Use Case

AcquisitionRetentionMonetization

Team

ProductDataEngineeringMarketingExecutive

Size

StartupsEnterprise

Learn

BlogResource LibraryCompareGlossaryExplore Hub

Connect

CommunityEventsCustomersPartners

Support & Services

Customer Help CenterDeveloper HubAcademy & TrainingProfessional ServicesProduct Updates

Tools

BenchmarksTemplatesTracking GuidesMaturity Model
LoginSign Up

The Hard Thing About Product Analytics

We've established that it’s hard to build a good product analytics suite that actually gets adopted across an entire company. The good news is there are a bunch of amazing startups working on this exact problem.
Insights

Jan 25, 2017

7 min read

Sandhya Hegde

Sandhya Hegde

Former VP of Marketing, Amplitude

The Hard Thing About Product Analytics

I spent the last four years investing in high impact startups and helping them find product-market fit. While they all professed a desire to be data-driven and iterate rapidly, only a few realized that goal. Implementing a good product analytics process and creating a transparent, data-informed culture across an entire team continue to be extremely hard problems — only getting harder as every growing company becomes a “big data” company and wonders how “AI” will affect them. These are tired buzzwords, but have unfortunately real implications.

What’s different about product analytics?

Gartner defines product analytics as a specialized application of business intelligence towards gathering feedback on products. This definition is the crux of the problem.

Historically, the role of BI has been maintaining the central repository of truth about the history of a company. What was sales 3 years ago? What was the operating budget last month? How many paying customers do we have this week? In the trade-off between speed and accuracy, the latter always won. The analysis could be batched, as long as it was comprehensive. It was never required to be self-serve because the “truthfulness” had to be audited by a centralized data team before public consumption. If you needed to run some ad-hoc analysis yourself, you export data to the all-powerful Microsoft Excel. Hello, pivot tables!

None of this rings true for an agile product team in today’s move-fast-break-things culture. The ability to explore all data on user behavior in real-time could be the competitive advantage for a team.


Sample of behavioral cohorts, conversion funnels and retention analysis from the Amplitude Demo.

Amplitude cohort screenshot

Product analytics needs to be real-time, collaborative and self-serve in order to align product vision during rapid cycles of iteration. It needs to be easy to use in order to create that elusive data culture. BI tools are simply not set up to serve these two particular goals.

So how are most companies solving their “data problem” today?

The older generation of companies — tech companies launched during the first dot-com boom and every other consumer business—rely heavily on centralized BI teams now managing data lakes and warehouses using Informatica/Hadoop/BigQuery/Redshift et al.

This often creates massive bottlenecks and data breadlines in companies. As Tomasz Tunguz elaborates in his book, the data poor are waiting in queues with their resource coupons, and often asking fewer questions as a result.

Companies that were born during the second internet boom and the dawn of the mobile era typically embed analysts in each team for fast results. This creates data silos in organizations with each team relying on their own tools to answer questions. It has led to this famously terror-inspiring market landscape of big data that continues to scare CIOs everywhere and seems firmly here to stay.

Another effect of this trend is a massive surge in demand for analysts and data scientists. Everyday, consumers create more and more data that teams need to access and explore, with analysts to manage and learn the specialist tools needed to access each silo. Some companies hire engineers to build and maintain their own in-house data analytics stack. Executives who are skeptical about the massive investments being made in data infrastructure often demand to see evidence that any of it is worth it. Those who do invest in building their own custom analytics often need to change it as soon as they are done, because of evolving business models and technology frameworks.

Ok, now we have data engineers, analysts and scientists. Isn’t it fixed?

If so, it was probably very expensive and you were very lucky. Congrats! However, when you look under the hood, here’s what you might find:

  • Data scientists who want to work on advanced predictive models, but instead are answering basic questions for executives and spending more time cleaning data than answering anything at all.
  • Engineers who want to build fancy machine learning features into your product, but instead are fielding endless last-mile requests from analysts across marketing, product and biz ops.

That’s two expensive and less-than-fulfilled groups of people you might be massively under-utilizing in your organization.

Instead of dedicating their valuable time towards building the future, they are stuck helping everyone else catch up to the present.

So what does the future of building product look like?

Despite all the advances made in machine learning, what we see and touch today within products is limited — just better tailored recommendations for what to click on next. What else you would like see, read and buy, but not how. The product itself is the same for every user, a one-size-fits-none experience.

The first, small step towards building products that can learn and adapt is to build teams that can learn and adapt instantly. Product managers, growth teams, marketers, customer success, analysts and executives who can both ask and answer any question about users. Organizations that can collaborate on experiments and share insights to make better choices. Teams where everyone is empowered to make objective decisions.

This needs an entire generation of enterprise analytics tools native to the big data stack (Redshift, Spark, et al) that are not only future-ready but also easy for everyone to use. So far, self-serve tools in product and marketing analytics have struggled to go beyond counts/page-views to sophisticated queries, leaving teams frustrated. Product instrumentation and maintenance of tracking plans continue to be tedious chores for large teams. The future will belong to a platform that not only generates insights instantly, but also uses best in class ML to help teams discover what questions to ask!

What I’m excited to be working on…

We have established by now that it’s damn hard to build a good product analytics suite that actually gets adopted across an entire company. The good news is there are a bunch of amazing startups working on this exact problem.

I recently joined the extremely talented team at Amplitude who share my vision for the future of product development. We’re building an analytics platform that helps teams build better products through access to the behavioral layer of user data. Our solution has given us strong traction with great feedback from early adopters at Square, Instacart, and even behemoths like Disney, Intuit, and Microsoft. If you are interested in the problem we are solving at Amplitude get in touch!


This post was originally published on Medium on January 17, 2017.

About the author
Sandhya Hegde

Sandhya Hegde

Former VP of Marketing, Amplitude

More from Sandhya

Sandhya Hegde is a former VP of Marketing at Amplitude, driving our strategy to help companies around the world build better products and win. A graduate from IIT Bombay and Stanford GSB, she is passionate about all things technology and business. Having been a startup founder, VC investor at Sequoia Capital, Khosla Ventures, as well as a product leader—she is an expert on how companies can craft product-led strategies for innovative disruption.

More from Sandhya
Topics
Platform
  • Product Analytics
  • Feature Experimentation
  • Feature Management
  • Web Analytics
  • Web Experimentation
  • Session Replay
  • Activation
  • Guides and Surveys
  • AI Agents
  • AI Visibility
  • AI Feedback
  • Amplitude MCP
Compare us
  • Adobe
  • Google Analytics
  • Mixpanel
  • Heap
  • Optimizely
  • Fullstory
  • Pendo
Resources
  • Resource Library
  • Blog
  • Product Updates
  • Amp Champs
  • Amplitude Academy
  • Events
  • Glossary
Partners & Support
  • Contact Us
  • Customer Help Center
  • Community
  • Developer Docs
  • Find a Partner
  • Become an affiliate
Company
  • About Us
  • Careers
  • Press & News
  • Investor Relations
  • Diversity, Equity & Inclusion
Terms of ServicePrivacy NoticeAcceptable Use PolicyLegal
EnglishJapanese (日本語)Korean (한국어)Español (Spain)Português (Brasil)Português (Portugal)FrançaisDeutsch
© 2025 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Recommended Reading

article card image
Read 
Product
Getting Started: Product Analytics Isn’t Just for Analysts

Dec 5, 2025

5 min read

article card image
Read 
Insights
Vibe Check Part 3: When Vibe Marketing Goes Off the Rails

Dec 4, 2025

8 min read

article card image
Read 
Customers
How CAFU Tripled Engagement and Boosted Conversions 20%+

Dec 4, 2025

8 min read

article card image
Read 
Customers
The Future is Data-Driven: Introducing the Winners of the Ampy Awards 2025

Dec 2, 2025

6 min read

Explore Related Content

Integration
Using Behavioral Analytics for Growth with the Amplitude App on HubSpot

Jun 17, 2024

10 min read

Personalization
Identity Resolution: The Secret to a 360-Degree Customer View

Feb 16, 2024

10 min read

Product
Inside Warehouse-native Amplitude: A Technical Deep Dive

Jun 27, 2023

15 min read

Guide
5 Proven Strategies to Boost Customer Engagement

Jul 12, 2023

Video
Designing High-Impact Experiments

May 13, 2024

Startup
9 Direct-to-consumer Marketing Tactics to Accelerate Ecommerce Growth

Feb 20, 2024

10 min read

Growth
Leveraging Analytics to Achieve Product-Market Fit

Jul 20, 2023

10 min read

Product
iFood Serves Up 54% More Checkouts with Error Message Makeover

Oct 7, 2024

9 min read

Blog
InsightsProductCompanyCustomers
Topics

101

AI

APJ

Acquisition

Adobe Analytics

Amplify

Amplitude Academy

Amplitude Activation

Amplitude Analytics

Amplitude Audiences

Amplitude Community

Amplitude Feature Experimentation

Amplitude Guides and Surveys

Amplitude Heatmaps

Amplitude Made Easy

Amplitude Session Replay

Amplitude Web Experimentation

Amplitude on Amplitude

Analytics

B2B SaaS

Behavioral Analytics

Benchmarks

Churn Analysis

Cohort Analysis

Collaboration

Consolidation

Conversion

Customer Experience

Customer Lifetime Value

DEI

Data

Data Governance

Data Management

Data Tables

Digital Experience Maturity

Digital Native

Digital Transformer

EMEA

Ecommerce

Employee Resource Group

Engagement

Event Tracking

Experimentation

Feature Adoption

Financial Services

Funnel Analysis

Getting Started

Google Analytics

Growth

Healthcare

How I Amplitude

Implementation

Integration

LATAM

Life at Amplitude

MCP

Machine Learning

Marketing Analytics

Media and Entertainment

Metrics

Modern Data Series

Monetization

Next Gen Builders

North Star Metric

Partnerships

Personalization

Pioneer Awards

Privacy

Product 50

Product Analytics

Product Design

Product Management

Product Releases

Product Strategy

Product-Led Growth

Recap

Retention

Startup

Tech Stack

The Ampys

Warehouse-native Amplitude